MESSAGE FROM HOD

The Department of Mathematics \& Statistics was established in 1972. The Department offers courses of Mathematics, Statistics, Business Mathematics and Business Statistics. Apart from emphasizing consistent and good academic performance, the department provides a platform for the students to apply mathematical concepts and to develop the ability to transfer the mathematical of thinking and reasoning to real life situations. Mathematics is important for all professions in the world. Every aspect of life is highly dependent on the use of numbers and arithmetic.
math is the language of science. It is used to develop the rest of science and interpret its theories, especially physics, chemistry, astronomy, geography, etc. It enables thinkers to test their ideas by doing many experiments. Nathematics is the most important part of banking and financial matters. It is necessary to be accurate in the accounts to be able to maintain the money in an optimal manner. Nathematics helps people manage money by balancing the checkbook or shopping at the most expensive prices. It helps calculate bills (collection and subtraction of income and expenses), financial obligations of taxes, insurance, loans, and others.

I thank my students of \mathbf{B}. Com 4 th Semester for their efforts in publishing the fifth Volume of our Departmental Bulletin "Ramanujan". I thank our Respected Principal Sir of our College who encourages us and helps us in all steps in all our departmental activities. I also thank Mrs Tulumoni Gogoi for all her co-operation in publishing the Bulletin.


```
Dr. Karabi Devi
```


During a dark night in a dark room, shine a bright torch light with a rounded head on to the floor. Point the torch straight down; we would get a disc shape. Town it slightly and the disc becomes distorted. If we rotate the torch for enough, the image on the fioor will stretch away from us indefinitely. The outline of the shapes formed by the torch on the floor are known as the conic sections: the distorted disc is called an ellipse until it stretches off to infinity when it becomes a hyperbola. At the precise touch angle for which the ellipse become a hyperbola, the special curve produced is known as a parabola.

Since their first discovery, credited to a Greek man menaechmus from around 350 BCE , conic sections have been observed in a variety of situations. The Earth-travel round the sun in the shape of an ellipse, radio dishes and car headlight are parabola shape because of the light is reflected from their surface.

The Greeks gave the official definition of comicsection as the curves formed through the intersection (section) of a cone (Comic) and a plane. The curves are the outline of the intersection region. In the example at the beginning, the cone was the beam of the torch, the plane was the floor and the intersection was the image on the floor, it has since proved most formed through intersection of a plane and two comes, one above the other.

ROMAN MATHEMATICS

Roman numerals originated as the name might suggestin aftient Rome. There are seven basic symbols $1, V, x / L$ C and M^{+}.The first usage of symbols began showing upbetween 900 and 800 BC. The numerals developed out of the need for a common method of counting, essetials
 to communication and trade
$<$ represent five fingers ,speciall reffered to one unit or finger, the " V " represent five fingers, specially the v shaped made by thumb and other symbols. M . two hands. Larger Roman numerals developed from value It was $: M=1000$-originally the Greek letter phi - represented this coincidence the mile is the latin word for a thousand. co inverse- half of CIC(C) inverse)
bec + + $=100$-The original symbol was probably theta and later became a C-It only coincidentally also stands for Centum, the latin word for hundred.
$\mathrm{L}=500$-This value was originally represent by a superimposed V and I, or by letter Psi - - which flattened out to look and inverted T and thén eventually came to resemble on L

Roman numerals universally understood, sophisticated math system and made trading more important. Eventually, Roman numerals give way to/the more versatile Arabic or Hindu numerals system, where numbers are read as a single number in sequence like 435 as four hundred thirty five
1/ As the roman Empires collapsed a thousand years later Christianity, '[ironically one of Rome's earliest targets for persecution. continued to use the culture number system.
Today Roman numerals appear in building cornerstones and movie credit and tittles. They are also used in name of monarch , popes .ships and sporting events loke Olympics and super bowl.

"ANUPAM SAIKIA"
 "

Anupam Salkia is an Indian

 mathematiclan who was born In Assam. He quallified his sehool from Gov. Higher Secondary school, ColeghatAssam in the year 1959. Then he did his pre-university studies at Cotton Colliege, Guwahat till 1901 and further he Joined St. Stephen's College, in Dethl for his Bacheior's in mathemaica. anter his B. Sc degree In 1994, he Jotned Trinly College, Cambing Department of a wrangler in 1996. He pursuod his PHD degroc itics, the Universiny of Pure Mathermatics and Mathematical statistics, thesis titied Mrasaw Cambridge, which he reoeived in 2001 for a Adic L-Functions under Theory of LuBn - Tate Diviston Towers and P. Adic 'Smith and knight the superviston of Jotn Coates. He was awarded inion for second-yoar Pitio' in the annual mathermaties essay cide in 1999.PhD studenis at the Universty or Cambrioge in sof of the fournal of the He is a member of the edicorial beultetin of the Mathematics Ramanuyan Mathormaicion (india).

STARLINK

Spacex's satellite internet system in 2019, SpaceX launched the first 60 satellites of Starlink. Since then, over 2,000 have reaches orbit, set to become part of a constellation of more than 12.000. Known as Starlink. the project airns to bring highspeed internet to every comer of the planet. SpaceX founder and CEO Elon Slusk announced the Starlink concept in Jan. 2015, explaining the company intended to launch only about 4,000 broadband satellites into low-Earth orbit to provide low-cost internet. For perspective, there were only about 2,000 operational satellites in or bit before Starlink, and humanity have launched only around 9,000 craft into space in all of history.Currently, fast internet access is only available in places with fibre optic cables. In remote locations, communications satellitespro. vide links to the internet, but the connections are notoriously slow. These sateltites sit in geostationary orbit, meaning they travel at the same speed as Earth's rotation and therefore remain positioned above the same point on the ground, according to the European Space Agency (ESA). This makes it easy for recelsing satellite dishes to connect with them, but the downside is that transferring data in this way takes time.

NASA
 NABA stand for national Aeronauties and space Adminis Tautioul Muspoin

 established In 1983, succoeding the National Advisory Comminee fas Aeronautics (NACA, The new agency was to have a distinctly clvillan oriemation, enoouraging pasceful applleations in space selence.Since the estabilitiment, most US space expioration efforts have been led by MasA Including the Apollo Moon landing missions, the Skylab space station, and Inter the Space Shurtio. NASA Is supporting the Infernationat Space Station and is oversecing the development of the Orion spacecratt, the Space Leunch System, Commercial Crew vehicles, and the planned Lunar Gateway space stadon. The agency is also responsible for the Launch Services Program, which prowides oversight of taunch operations and countiown managemenif for uncrewed NASA bunches. Beginning in 1946, the National Advisory Committee for Aeronautics (NACA) began experimenting with rocket planes such as the supersonle BeII X.1. In the early 1950s, there was challenge to launch an artificlal satellite for the International Geophysical Yoar (1987-1988): An Cfiort for this was the American Prolect Vanguard. After the Sovice space program's Launch of the world's first artinicial satellike (Sputalk 1) on October 4. 1957, the attention of the United States tumed toward its own fiedgllng space eflorts. The U.S. Congress, alarmed by the percelved threat to national securlty and technological loadership (known as the ESputilk crisis7. urged immediate and swift action; President Dwigh D. Eiscnhower counscied more deliberate measures. The result was a consensus that the White House forged among key interest groups, Including scientists committed to basic research; the Pentagon which had to match the Soviet military achlevement; corporate America looking for new business; and a strong newtrend in public opinion looking up to space exploration.Theagency's Ceader. NASAisadministrator, Is nominated by the President of the United States subject to the approval of the US Sanate, and reports to him or her and servesasen senior space sclence advisor. Though space exploration is ostensibly nor-partisan, the appolnse usually is associated with the Presldent's pondical party (Democratte or Repubilean), and a new administraior ls usually chosen when the Presidency changes parties. The only exceptions to this have been:Democrat Thomas O. Paine, teting administraior under Demoerat Lyndon B. Johnson, stayed on while Republiean Richard Nixon tried but lailed to get one of his own cholces to eceept the Job. Palne was conflumed by the Senete In March 198% and sarved shrough September 1970.
Republican James C. Fisteher, appointed by Nixon and confirmed in April 1971, stayed through May 1977 into the term of Demoerat Jimmy Carter. The first administrator was Dr. T. Keth Glennan, appointed by Repubican President Dwight D. Elsenhower. During his term he brought together the disparate projects in Amertein space dovelopment research.
NASA Moxdquarters in Mashington, DC provides overall guldance and poltaleal lasderatip to the agency's ten lield eenters, through which all other facilleses are administored. Foup of these were Inherted from NACA; two others were trensforred from the Army; and NASA commissioned and buill the other four itself shortly after lis formantion.

Bioinformatics is an interdisciplinary field that dovelops.methods and software tools for understanding biological data, in particular When the data sets are Large and Complex, Blolnformatics is an emerging field of science that deals with the application of disciplin to the Collection, Organization, analysis manipulation:-presentation, and sharing of biological data. Bioinformatics is The Central Component of bioinformatics is the study, of the best way. to design and operate biologic data base nucleotide and protein sequence data aro obtaingd, via various rosearch tochniquos, along with Other type of information stored primary and Secondary biological data bases, scientists started to use Computers to obtain and analyze biological data in their daily
 a vital part of blological cducation.
Bioinformatics is an evolving discipline, and complox Software/programs;aro now being used for retrieving predicting, and storing DNA and protein using various.;programs and databases available on the world. Wide A Part from the analysis of genome sequence data, bioinformatics is inowlbeing for a vast array of other including analysis of gene Variation and expression, analysis and prediction of gene and protein Bioinformatics can be used for different other fildss of biology of different groups of living beings.

ASTRONONY

Astronomy means the study of the laws of the stars.lt is a natural science that tutdies celestial objects and phenomena.lt uses math's, physics and chemistry in order to explain their origin and evolution. It includes the study of planets,moons,stars,galaxies and comets. More generally, astronomy studies everything that originatesbeyond earth's atmosphere. Cosmology is one of a branch of astronomy that studies the universe as a It is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Baby Ionians, Greeks,Indians, Egyptians, y ya and many ancient indigenous people of the Americas.In the past, As onomy included disciplines as diverse as asf vomeny, celestial navigatichin,observational astronomy and the making or colendars. But nowadays it is often said to be the same as astrophysics.Professional Astronomy is spitt into observational and theoretical branches. Observational Astronomy is focused on acquiring data from observations of astronomical objects. This dreta is then analyzed using basic principles of physics.Theoreticalmastronomy is oriented towards the development of computer or analytical models to describe astronomical objects and phenomena.These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results.
Astronomy lsene of the fewrsciences in which amateurs play an active role. This is specially true for the discovery and observation of transient events Amateurs astronomers have helped with many important discoveries, such as finding new comets.

Archimedes was born 287BCE in Syracuse on the island of Sicily. He was well known for his inventions and scientific discoveries.

The most famous mathematician and inventor in ancient Greece. Archimedes is especially important
for his discovery of the relation between the surface and volume of a sphere and its circumscribing cylinder. He is known for his formulation of a hydrostatic principle and a device for raising water, still used, known as the Archimedes screw.

There are nine extant treatises by Archimedes in Greek. The principal results in On the Sphere and Cylinder are that the surface area of any sphere of radius r is four times that of its greatest circle and that the volume of a sphere is two-thirds that of the cylinder in which it is inscribed. Archimedes was proud enough of the latter discovery to leave instructions for his tomb to be marked with a sphere inscribed in a cylinder.

On Conoids and Spheroids deals with determining the volumes of the segments of solids formed by the revolution of a conic section about its axis. In modern terms, those are problems of integration.On Spirals develops many properties of tangents to, and areas associated with, the spiral of Archimedes-i.e., the locus of a point moving with uniform speed along a straight line that itself is rotating with uniform speed about a fixed point.

On Floating Bodies survives only partly in Greek, the rest in medieval Latin translation from the Greek. It is the first known work on hydrostatics, of which Archimedes is recognized as the founder.

The world's greatest scientist Archimedes was died during the Siege of Syracuse in 211 BC.

PERIODIC TABLE
 Silpa Dam

The periodic table was one of the most important development in the far of chemistry. Periodic table is a table of the chemical element arranfed in order of atomic number, usually in rows, so that elements wirth sied in atomic structure appear in vertical columns crucial part in the field of chemistry as it allowed perrocic table played a the elements so that it was possible to make predit a way of organising chemical and physical properties based on predictions about both their table.
HISTORY OF PERIODIC TABLE
The modern periodic table arranges the elements by their atomic numbers and periodic properties. Several Scientists worked over almost a century to assemble the elements into this format. Among the Scientists who worked to create the periodic table were Antoine Lavoiseir, Johann WolfgingDobereiner, John Newlands and Henry Moseley. In 1869 Russian Chemist Dmitri Mendeleev created the modern periodic table which was accepted generally for the first time. He created the framework that became the modern periodic table, leaving gaps for elements that were yet to be discovered.
USES OF PERIODIC TABLE
Before all naturally occurring elements were discovered, the periodic table was used to predict the chemical and physical properties of elements in the gaps on the table. Today, the table can be used to predict properties of elements yet to to be discovered. Nowadays, the table its useful for modern students and Scientists because it helps to predict the type of chemical reactions that a particular element is likely to participate in. Rather than memorizing facts and figures for each element, students and Scientist needs only glance at the table to learn much about the reactivity of an element, whether it is likely to conduct electricity, whether it is hard or soft and many other characteristics

CONCLUSION

The periodic table plays a very significant role as it is organized to provide a great deal of information about elements and how they relate to one another in one easy to use reference. Thus, periodic table makes trend in element properties apparent and easy to understand. The table provides important information used to balance chemical equations.

DARK MATHER

Kunal Dhar
B.com 4m Semester

The ancient Greeks had a great idea the universe is simple in their minds, all you needed to make it were four elements: Earth, Air, Fire, and Water. As the theory goes it says that by combining the four basic elements in different ways you can produce all the wonderful diversity of the universe. Earth and fire, for example, give you things that are dry Air and water, things that are wet. But as theories go, they had a problem: it didn't predict anything that could be measured, and measurement is the basic of experimental science worse still, the theory was wrong. But the Greeks were great scientists of the mind and in the 5 th century B.C.; Leucippus of Miletus came up with the most enduring scientific idea ever. "Everything we see is made up of tiny, indivisible bits of stuff called atoms". Centuries of scientificithoughts and experimentation have established that the real elements things like hydrogen, carbon and iron can be broken down into atoms.

Dark matter is the stuff that makes it possible for galaxies to exist. When scientists first measured the motion of groups of galaxies in the 1930's and weighed the amount of matter they contained they were in for a surprise. They found there was not enough visible stuff in those groups to provide enough gravity to hold them together. From what we can see, they ought to fly apart but they don't. Everything we see with telescope, consists of 15% of the total mass of the universe. Everything else 85% of it doesn't exist or absorb light. We can't see it with our eyes, we can't detect it with radio waves or microwaves or any other kind of light. Places with high concentration of Dark-Matter bend light passing near by so there is something there that is interacts with gravity.

Constant advanced studies have shoun one of the strongest things we have learned to far is that most of the material in the universe is made of something entirely different than you and me. But without it the universe as we know it wouldn't exist.

TURING PATTERN

The Turing Pattem is a concept which was introduced by thefamous English mathematician and theoretical biologist Alan Turing in a papertitled. The Chemical Basis of Morphogenesis" in 1952 .It helps to describes how patterns in nature such as stripes and spots can arise naturally and autonomouslyfrom a homogeneous or uniform state.

In his classic paper.Alan Turing examined the behaviour of a system in which two diffusible substances interact with each other and found that such a system is able to generate a spatially periodic pattern even from a random or almost uniform initial conditionturing hypothesized that the resulting wavelike patterns are the chemical basis of morphogenesis.

The original theory, a reaction-diffusion theory of morphogenesis has served as an important model in theoritical biology.Reaction-diffusion systems have attracted much interest as a prototype model for pattern formation. pattems such as fronts, hexagon, spirals,stripes and dissipative solitons are found assolutions of Turing-like reaction-diffusion equations.

Mathematics is the only place where truth and beauty means the same thing. Mathematics rightly viewed, posses not only truth but supreme beauty. Mathematics expresses values that reflect the cosmos, including orderliness, balance, harmony logic and abstract beauty. The study of complex mathematics was not found until around 3000 BC. The use of arithmetic, algebra and geometry was made by Babylonians and Egyptians for building and construction as well as for astronomy.
At the beginning of the 6 th century BC, Greek mathematics was introduced by the anclent Greeks.
Archimedes is known as the father of mathematics. He llved between 287 BC-212 BC and Emmy Neother is known as mother of mathematics she developed some theorles of rings, fields, and algebras.
About 778 AP the mathematiclan Mohammed Ibn Musa, al-Khawarcigni was the first to work on equations that are equal to zero. Though he called It "sifr". By the nine century, the zero was part of the Arabic numeral system In a similar shape to the present-day oval we now use. This zero plays a vital role in mathematics.
Hindu - Arable numerals, set of 10 symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, 1° - that represent numbers in the decimal numbers system. They originated in Indla in the 6th on 7th centuries and were Introduced to Europe through especially al- Khwarizml and al-Kindi, about 12th century.
Algebra, Geometry, calculus and statistics and probability are considered to be the 4 main branches of mathematics.
Mathematics provides an effective way of bullding mental discipline and encourages logical reasoning and mental rigour. In addition, mathematical knowledge plays a cruclal role in understanding the contents of other subjects such as science, social studies, and even music and art. Mathematics Is very useful in everyday life we use math concepts as well as the skills, we leam from participating in math problems every day. Mathematics gives us a way to understand patterns, define relationships and predict the future. It helps us to do many important things in our daily lives.
Respected French mathematics and physicist Simeon Denis poisson said that Life is good for only two things, discovering mathematics and teaching mathematics.

Printed : Jagaran Press, Golaghat
Published By : Department of Mathematics Golaghat Commerce College
Published On : $7^{\text {th }}$ May, 2022

BOOLEAN ALGEBRA

Boolean algebra, symbolic system of mathematical logic that represents relationships between entities-either ideas or objects. The basic rules of this system were formulated in 1847 by George Boole of England and were subsequently refined by other mathematiclans and applied to set theory. Today, Boolean algebra is of significance to the theory of probability, geometry of sets, and information theory. Furthermore, it constitutes the basis for the design of circuits used in electronic digital computers.In a Boolean algebra a set of elements is closed under two commutative binary operations that can be described by any of various systems of postulates, all of which can be deduced from the basic postulates that an identity element exists for each operation, that each operation is distributive over the other, and that for every element in the set there is another element that combines with the first under either of the operations to yield the identity element of the other.The ordinary algebra (in which the elements are the real numbers and the commutative binary operations are addition and multiplication) does not satisfy all the requirements of a Boolean algebra. The set of real numbers is closed under the two operations (that is, the sum or the product of two real numbers also is a real number); identity elements exist-0 for addition and 1 for multiplication (that is, $\mathrm{a}+0=\mathrm{a}$ and $\mathrm{a} \times 1=\mathrm{a}$ for any real number a): and multiplication is distributive over addition (that is, $\mathrm{a} \times[\mathrm{b}+\mathrm{c}]=[\mathrm{a} \times$ b] + [a \times c $]$]; but addition is not distributive over multiplication The advantage of Boolean algebra is that it is valid when truth-values-i.e., the truth or falsity of a given proposition or logical statement-are used as variables instead of the numeric quantities employed by ordinary algebra. It lends itself to manipulating propositions that are either true (with truth-value 1) or false (with truth-value 0). Two such propositions can be combined to form a compound proposition by use of the logical connectives, or operators, AND or OR. (The standard symbols for these connectives are and, respectively.) The truth-value of the resulting proposition is dependent on the truth-values of the components and the connective employed. For example, the propositions a and b may be true or false, independently of one another. The connective AND produces a proposition, a b, that is true when both a and b are true, and false otherwise.

ACTIVITIES OF THE DEPARTMENT
NATIONAL WEBINAR ON "RE-EMERGENCE OF LIBERAL EDUCATION: A FOCAL

CELEBRATION OF NATIONAL MATHEMATICS DAY

EDITORIAL BOARD

Advisors :- Dr .K Devi, Mrs T Gogoi Members :- Subhir Paul Momta Chetry , Anuswari Meheswari, Santana Gupta

